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Note on the Central Limit Theorem

by

Harold N. Shapiro

il. Introduction . The well-knovjn theorem of Lindeberg asserts

that for a sequence X, ,Xp,.., of mutually independent random

variables such that the mean of each X, is 0, and each X, has

finite variance, in order that

(1.1) ^n^^n^^
—

^ ^^^^ ^°^ ^^^ ^'

and

(1.2) \(s^x) —> e(x) for all x ^ ,

uniformly in k, for 1 < k < n; (here ^(x) is the standard normal

distribution with mean and variance 1; e(x) is the unit dis-

tribution with mean zero and variance 0; F'if(x) is the distri-

bution function of X, , ^n^^^ ^^ ^^^ distribution function of

S = X, +,..+X , and s is the variance of S) it is necessary
n 1 n' n n

and sufficient that for every ^ > 0,

(1.3) 11m -^ YH ] ^ ^k ^ ' •

n—>oo s _ k=ln l^l< ^n

The condition (1.3) is usually referred to as the "Lindeberg

condition".

In the book of Gnedenko and Kolmogoroff , Limit Distributions

for SuiTis of Independent Random Variables, (p. 5), it is implied

that the condition

(l.i^) EZ P{\\\ > ^s^) -^ ,

k<n '
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which is clearly a consequence of (1.3), is in fact equivalent

to (1.3), in the setting given above. This (as we shall show)

is not true, and the question arises as to just what is implied

by (l.lf.) concerning the possible limit distributions of the

partial sums, Ve propose to answer this question in this note.

Vie call G(x) an accumulation d.f, if for some sequence

n. —> CO , the normalized partial sums S have d.f.'s which
1 n.

converge to G(x), The following is the theorem v;hich will be

provided in answer to the question raised above.

Theorem : If we assume that s —>-cr)asn—>oo, and that (1»I|.)

holds for all ( > 0, then the accumulation distributions of the

partial sums form a one parameter family of normal distributiona

This pararaeter is the variance of the accumulation distribution,

and ranges over a cloaed subinterval of [0,1], This closed

subinterval is in fact the set of limit points of L(n),'''

An example will be given in which the pararaeter range is

the entire interval [0,1]. Similar examples may be constructed

in which the parameter range is any given closed subinterval

of [0,1],

§2. Proof of the Theorem . The assumption of (l.ij.) for every

^ > is equivalent to asserting the existence of a function

^ (n) such that

(2.1) lira ^(n) =
n—s-oo

and

(2.2) lim IZ pUXj.1, > Mn)s ) = .

n->oo k<n

L(n) is defined on p. 3.
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It is in the form (2,2) that the hypothesis will be applied.

Let G(x) be an accumulation d.f. of the normalized partial

sums S /s , and choose the corresponding subsequence n. —> oo

so that in addition for the function
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Summing (2,6) over all k < n, then yields

n, n,.

,»2

=1 ^ k^ K * 1 n^ .
\ x^dP,

^|^P(|XJ> 5(ni).„^>

X >

n.

?'"i'V

so that

(2.7)

n.

n ^^ = o(s2

)

k=l ^ "i

Note also that we have

x^dF,

^ |x|>'/(ni)s^

SD that

"i
, Z^i ^i

\

-:i4i^4:;p(i^k'>'/("i^%^4= --k
'=^ ^=^ ^ ^"^ |x|>1(n^)s^
IZ
k^

"
x^dP,

< o(s ) ,

^1

and hence

(2.8)

n-

k=l ^ "i

Prom (2.3), (2.5) and (2.7) we obtain that
'2

s
n.

(2.9) a as n 00

n.

Using (2.3) again this implies

(2.10) -T? I x^ dP, -> 1 ,

s k<n. ^
•
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as n, —> cx) . Letting F, denote the d.f . of X^, (2.10) and

(2.2) yield that"

(2.11) -k 2:33 (
x^ dF* > 1 ,

as n, —> 00, Hence from a slight extension (well known) of the

Lindeberg theorem it follows that

( n. ^rrr^k \

(2.12) P 1
_i4zi— < OJ —* ItJ) .

But from (2.8) and (2.9) this in turn implies

-> Jico)

t

as n . —> 00 • Since s ^^ v/a s it follows that
i ^i ^i

's'

"^i . , . I ^ -^f ^
{2,1k) ?i^<Uj] >li-~z) .

^i
^n. / s/^

Finally, from (2,2)

P(S* 7^ S ) -^ as n
nj, n^ 1

so that we obtain from (2.11|) that

00 ,

The argument as it proceeds here is valid only for a > 0. The
validity of the final assertion in the case a = is easily
verified directly (see Example I of §3).
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(2.15) pi-— < ^-o] >^(-^)

as n. —-> 00 , where ^(-^) is the normal distribution function

with mean and variance a.

Thus under the assumption of (2.2) all accumulation dis-

tribtuions, of the normalized partial sums, will be normal.

Furthermore, it is easily shown that these accumulation dis-

tributions are in 1-1 correspondence with the limit points of

L(n), where for a such a limit point ?(-i^^) is the corresponding
/a"

accumulation d.f. In particular, this shows that the limit

points of L(n) are indenendent of the particular choice of ^(x)

used in defining L(n), so long as (2.2) is satisfied.

We next proceed to the consideration of the implications of

(2,2) with respect to the range of the parameter a introduced

above.

Lemma 2»1. Assuming (2,2) we have

J ^ T /v,\ _ r (r.j.-i \ i =

r 2
I s„

(2.16) lim j-^ L(n) - L(n+l)t =0

Proof:

_!n_ L(n) = -^ n ^^ dF^
s .

T s" ., k<n >
.^'l ^^^ - |x|<'^(n)s^

1
-2- - J

x2 dF^ - 1 ^^d^nn

|x|< (n+l)s^^^ ^^-"l
|xf<l^(n+l)^l

^ T- x^dF,
s^,-, k<n J ^
^"•^ - (n)s^<|x|< in^Ds^^^
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= L(n+l)+0('/2(n+l))+0(^P(|X, |>^(n)s ))

k<n

= L(n+1) + 0(1) . q.e.d.

We are nov; in a position to complete the proof of the

theorem, by proving

Lemma 2.2 » Under the assumption of (2,2), the set of limit

points of L(n) fill out a single closed subinterval of [0,1],

Proof ; Let c = lim L(n), c = lim L(n), and consider any a,

£ < a < c. Suppose the lemma false, so that a is not a limit

point of L(n). Then there is an interval about a devoid of

values of L(n), Suppose this interval is [a,b], b > a. Clearly,

however, there are infinitely many L(n) in each of the intervals

[_c,a], [b,c]. Choose a sequence n, —> oo such that

L(n.) < a , L(n.+l) > b

Then

4

^n^+1

i- L(n^) - L(n^+1) < a-b < ,

which contradicts (2.16), and completes the proof of the lemma.

We note in passing that a converse of the theorem stated in

the introduction may be easily established. This converse is to

the effect that if (1,2) holds and all accumulation distributions

of the partial sums are normal, then (1,^+) must hold,

§3. Examples . We now provide some illustrative examples vjhich

serve to establish that (l,i;) does not imply the Lindeberg

condition.
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Example I ; This will be an example in which (l.ij.) holds,

and the parameter interval of the theorem is simply the point 0,

That is, the limit distribution of the normalized partial sums is

the unit function.

Choose X- = 2, and define X > recursively via

(3.1) X^ = (n+l)^ 2
k ^2

k<n-l (k+1)
2 ''k

•

Consider mutually independent random variables such that X^ has

the d.f, Fj^(x) given by

(3.2) F^U) = .{^

for

for

for
^k

^ >FhT •

Note then that

(1) the mean of P, is jo,, = ,

2
(2) the variance of F, is ^, =

(k+1)

^ x2
2 \ '

(3) for s^ = > erf we have s^ = cT = i so that s^ > 1,
n ^ k 11 n -

In addition, from (3.1) we have

,2 ^ .3 2
X'^ = (n+1)^ s^ , > (n+1)^ ,
n n-1 -

or

X„ > (n+l)3/'2

so that X —> CD and hence also s„ —> oo . Furthermore,
n n
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s? = ^ .
\l

+ s^ = [n(n+l)+l]s^
^" (n+1)^ ^ " '• " '•

'-n(n+l)s^ = 2. x2
,""-^

(n+l)2
^

so that

(3.3) x^^ ^ s„ , (or s^^-. ^ X„) .

(i^.) From (3.1) we note also that for k < n-1

^
(n+1)-^/^ " (n+D-

Fn--iFTT-A 1 7-7372 /^-/H-7::7Ti7^^n=°^^n)'

Hence, also, uniformly for k < n-1.

(5) J^ --^ 7=: = °^^n^
as n -> a, .

yn

(6) =n~^^n = °(l^\.' •

Using (i|.), (5)» and (6), we see that for any fixed ? > 0,

for n sufficiently large,

k<n

as n —> CO , so that (l.q.) is satisfied.

On the other hand.

±YZ U^^ dPj^ = ^ x2 dF
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as n —> oo , (by 3.3). Thus, certainly,

L(n) = -^ EI ^^ ^K ^ f

si k<n J
^

^ - |xl<^(n)s^

for any *) = 7(n) which tends to zero as n —> cd .

Prom this it follows easily that e(x) (the unit function)

is the limit distribution of S /s . In fact for any fixed 5 > 0,
n n

(3.i^) P(lr^l>6) < ZI PUx, l,>7s )+ -^ EI f
5^^ dPj^ *

n k<n b^ k<n I

where the first sum on the right is a truncation error, and the

second term is by Tchebychef's inequality. Thus we see that

S
P(|-n| > 5) ^

as n —> 00, which gives the desired result.

Example I I. We next give an example in which the parameter

interval of th3 theorem is the entire closed interval [0,1], By

virtue of the theorem itself, in order to achieve this, it suf-

fices to give an example in which both the unit function and the

standard normal are accumulation distribution functions.

Let X, ,Xp,... be the sequence of random variables constructed

in Example I, x^hich are such that the d.f . of the normalized

partial sums tends to e(x). In addition, let Y-,Yp,.,, be an in-

finite sequence of random variables such that the d.f, of the

normalized partial sums tends to the standard normal, and on

which the Lindeberg condition holds T This last convergence is,

as is well known, uniform.

-;;- For convenience we take a simple case of Bernoulli variables, so

that the variance of the n*" partial sum is n.
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For S^ = X^ +..,+ X^, It follows from {3,h) that given any

6 > 0, there exists an n„ = n (5) such that for all n > n , and— o'

all X such that |x| > 5,

|P^'(x) - e(x)| < 5 ,

where F"(x) is the d,f« of S /s . Recalling that we have in-
n n n

dividual negligibility, i.e. (1.2) holds, we can choose blocks

of the variables of the X. sequence

B,
1

' iVi^i \}

such that

(3.5) d.f. of
^k-1 -^ ^k

(x) - e(x) < k '

for \co\ > Ti (recall that s. = o(s. )).
"" ^ ^k-1 ^k

Letting s = the variance of the n partial sum of the Y.

sequence, since the convergence of the d.f.'s of the normalized

partial suras to ^(x) is uniform, vje can choose blocks

'^ \\-i^^

such that

(3.6) d.f. of
^k-1^ ^k

(x) - ^(x) <l .

for all X. These blocks are also chosen so that

(3.7) ^
k-1

s = o(s ) .

^k ^k
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Now form the sequence of random variables consisting of both

quences j X^| and j Y. i in the order described by the blocks:

We next verify that the condition {1,1].) is satisfied by the

sequence jZ^. (, Let s denote the variance of the n partial sum
[^.j

of the Z.J and define k" = k"(n) to be the largest integer k such

that t, < n. Then, if Z is a Y., i.e. Z =Y . we have
k — n J' n 'c

TI P(|Z.|>';s ) < ^3 P(|X.|>hs )

j<n J ^ ^ i<t ,..
^ ^ \-::-

k"
^

|=.(iT,i.fV

Since, as n —> oo , t ..
—> oo and '2r —> oo , both sums on the

' k"

right tend to zero and (1.1|) is verified in this case. A similar

argument applies for the case vjhere Z is an X.,

Let S be the subsequence of partial sums of the Z. cor-
n, J

responding to stopping at the end of the p, blocks. Then, as a

consequence of (3.7), we have

and combining this with (3.6) yields

P —-i < X
I

> 5(x)

as n. —> CO .

Let S ' be the subsequence of partial sums of the Z. cor-

responding to stopping at the end of the B, blocks. Then by

arguments similar to those given above it is easily shown that
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